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We consider the problem of finding the coefficients q0, . . . , qNq of an Nqth order polynomial q(x) that is
given by a definite integral over another polynomial p(u) where the lower and upper integration limits are
also given by polynomials a(x) and b(x), such that:

q(x) =

∫ b(x)

a(x)

p(u)du (1)

The orders of the polynomials p(u), a(x), b(x) are denoted as Np, Na and Nb, respectively.

The Antiderivative of p(u)

We assume that our integrand polynomial p(u) is represented by an array of its coefficients p0, . . . , pNp , so
we have:

p(u) =

Np∑
i=0

piu
i (2)

We will denote this coefficient array in vector notation as p = [p0, . . . , pNp ]T . The dimensionality of this
vector is Np + 1. We will denote the antiderivative of p(u) as P (u). This antiderivative, in terms of its
polynomial coefficients is given by:

P (u) =

NP∑
i=0

Piu
i =

∫
p(u)du = P0 +

NP∑
i=1

pi−1

i
ui (3)

The order NP of this antiderivative P (u) is one higher than that of p(u), so we have: NP = Np + 1. The
coefficient P0 for the constant term u0 may be chosen arbitrarily - it represents our integration constant.
As we have no specific reason to do otherwise, we will choose P0 = 0. The coefficient vector of P (x) is
denoted as: P = [P0, . . . , PNP

]T and its elements can be computed from the elements in the coefficient
vector p via:

Pi =

{
0 for i = 0
pi−1

i
for i = 1, . . . , NP

(4)

In pseudo MatLab/Octave code, the function to find the coefficient-array of the antiderivate P of a
polynomial p, also represented as coefficient-array, could look like this:
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function P = integratePolynomial(p, P0);

if( nargin < 2 )

P0 = 0;

end

P = [P0, p ./ (1:length(p))];

Inserting the Integration Limits

Having found a means to construct the antiderivative of p(x), we may go back to (1) and apply the the

fundamental theorem of calculus
∫ b

a
f(x)dx = F (b) − F (a):

q(x) =

∫ b(x)

a(x)

p(u)du = P (b(x)) − P (a(x)) (5)

The term P (b(x)) represents a composition (or nesting) of the two polynomials P and b, that is: for
an input value x, we first evaluate y = b(x) and then evaluate P (y). We shall denote this composed
polynomial as B(x). The same reasoning applies to P (a(x)). So, the formula above suggests the following
algorithm:

function q = defPolyIntWithPolyLims(p, a, b);

P = integratePolynomial(p);

B = composePolynomials(b, P);

A = composePolynomials(a, P);

q = subtractPolynomials(B, A);

where we assume that we have functions at our disposal that perform integration, composition and sub-
traction of polynomials. All these functions expect polynomial coefficient vectors as inputs and return
another polynomial coefficient vector as result. The implementation of the integratePolynomial func-
tion was given in the previous section, composePolynomials and subtractPolynomials will be given in
subsequent sections.

Composition of Polynomials

In this section, we consider the problem of finding a polynomial c(x) that is a composition of two polyno-
mials a(x) and b(x) which have orders Na and Nb respectively. The order of the resulting polynomial c(x)
will come out as Nc = NaNb. We write the polynomials a(x), b(x), c(x) as:

a(x) =
Na∑
i=0

aix
i, b(x) =

Nb∑
j=0

bjx
j, c(x) =

Nc∑
k=0

ckx
k (6)

where c(x) is taken to be the composition of a(x) and b(x):

c(x) = b (a(x)) =

Nb∑
j=0

bj

(
Na∑
i=0

aix
i

)j

(7)
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and our goal is to find an algorithm to compute the array of coefficients c0, . . . , cNc from the two coefficient
arrays a0, . . . , aNa and b0, . . . , bNb

. By inspecting equation (7), we recognize that we need coefficient-arrays
of successive powers of the polynomial a(x), weight those arrays by a coefficient bj and accumulate them
into our c-array. We start from the 0th power and go up to to the Nbth power of a(x). The 0th power is
simply the constant 1, the 1st power is the polynomial a(x) itself. The second power is where it becomes
interesting: the coefficient-array array that represents the polynomial (a(x))2 = (

∑Na

i=0 aix
i)2 can be found

by convolving the a-array with itself because a multiplication of two polynomials, represented as coefficient
arrays, is done by a convolution of these coefficient-arrays. For the next power (a(x))3 = (

∑Na

i=0 aix
i)3 we

take the result of the previous power, (a(x))2, and convolve it with the a-array again. Thus, our overall
algorithm should repeatedly convolve the coefficient array of the inner polynomial with itself, weight this
result by a coefficient from the outer polynomial and accumulate it into the coefficient-array of the result.
In code, this could look like:

function c = composePolynomials(a, b);

c = zeros(1, (length(a)-1)*(length(b)-1)+1);

c(1) = b(1);

an = 1;

for n=2:length(b)

an = conv(an, a); % coeffs of a^(n-1)

c = c + b(n) * [an, zeros(1, length(c)-length(an))];

end

Subtraction of Polynomials

Actually, this is easy: we just subtract the coefficient arrays element-wise. However, some care must
be taken, if the polynomials to be subtracted are of different order (i.e. their coefficient arrays are of
different length): we will have to zero-pad the shorter coefficient vector for the higher order coefficients
appropriately. For generality, we write a function to form a weighted sum and define the subtraction as
special case thereof:

function r = weightedSumOfPolynomials(p, wp, q, wq);

Lp = length(p);

Lq = length(q);

if( Lp > Lq )

d = Lp - Lq;

q = [q, zeros(1, d)];

elseif( Lq > Lp )

d = Lq - Lp;

p = [p, zeros(1, d)];

end

r = wp*p + wq*q;

function r = subtractPolynomials(p, q);

r = weightedSumOfPolynomials(p, 1, q, -1);
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