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Most standard textbooks about analog (and digital) filter design only consider ”pass” filters, that is, filters
that let a certain band of frequencies pass and block another. The design procedure usually starts with
the design of a prototype transfer function that is lowpass in nature and has a radian cutoff frequency
normalized to unity. In this paper, we will consider a generalization of such prototype filters by - so
to speak - setting a scaled lowpass prototype transfer function on a pedestal. The resulting filters will
boost or attenuate low frequencies (according to the sign of the scale factor) and have a nonzero gain for
high frequencies (according to the added constant that defines our pedestal). Such filters are commonly
known as low-shelving filters. Starting from a low-shelving prototype, we may also obtain high-shelving
and band-shelving (peaking) filters by application of the well known lowpass-to-highpass and lowpass-
to-bandpass transforms in the s-domain. In [1], Orfanidis presents analytical (closed form) formulas for
the poles and zeros of Butterworth, Chebychev, inverse Chebychev and elliptic low-shelving filters. In
contrast to Orfanidis’ work, this paper presents a numeric/algorithmic approach that is applicable to any
kind of lowpass prototype design. For example, it may be used to design Bessel- or Papoulis low-shelving
prototype filters, assuming the problem of the corresponding lowpass design is already solved.

From Lowpass to Low-Shelving

Let our lowpass prototype transfer function be given by:

HLP (s) = kLP
NLP (s)

DLP (s)
(1)

where NLP (s), DLP (s) are the numerator and denominator polynomials and kLP is an overall scale factor.
We assume that the leading coefficients (those that multiply the highest power of s) in NLP (s) and
DLP (s) are normalized to unity. This is no real restriction since we can always absorb non-unity leading
coefficients in the scale factor. The assumption is convenient because the leading factor will indeed come
out as unity whenever we construct polynomials by multiplying out the product-form of a polynomial
p(x) =

∏N
n=1(x− rn) where the rn are the roots. And this is what we are going to do when we deal with

pole/zero representations of transfer functions. The magnitude-squared response of this filter is given by:

|HLP (s)|2 = HLP (s)HLP (−s) = k2
LP

NLP (s)NLP (−s)
DLP (s)DLP (−s)

(2)

Starting from this lowpass magnitude-squared function, we obtain our low-shelving magnitude-squared
function by scaling the lowpass magnitude-squared function by a factor (G2 − G2

0) and setting it on a
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pedestal by adding a constant G2
0. The scale factor (G2 −G2

0) is chosen such that the magnitude-squared
value at DC is given by G2 (assuming the DC-gain of the lowpass to be unity) and this value is (G2−G2

0)
above G2

0. Our low-shelving magnitude-squared function is thus:

|HLS(s)|2 = G2
0 + (G2 −G2

0) · |HLP (s)|2 (3)

from which we also see that our low-shelving design reduces to the lowpass prototype for G0 = 0, G = 1.
Substituting (2) into this equation and messing around a bit, we obtain:

|HLS(s)|2 =
G2

0DLP (s)DLP (−s) + k2
LP (G2 −G2

0)NLP (s)NLP (−s)
DLP (s)DLP (−s)

(4)

From this magnitude-squared function, we now must find the transfer function HLS(s) which we want to
write in a form analogous to to (1), such that:

HLS(s) = kLS
NLS(s)

DLS(s)
(5)

wherein we require:

k2
LSNLS(s)NLS(−s) = G2

0DLP (s)DLP (−s) + k2
LP (G2 −G2

0)NLP (s)NLP (−s)
DLS(s)DLS(−s) = DLP (s)DLP (−s)

(6)

From the second line, we immediately see that DLS(s) must equal DLP (s). This means that the poles
in the low-shelving transfer function are the same as in the lowpass transfer function. The right hand
side of the first line constitutes a polynomial which we construct from our known coefficients in NLP (s),
DLP (s) and the constants G0, G, kLP . The leading coefficient of this polynomial will be our scale factor
squared k2

LS and its left halfplane roots (those with real parts ≤ 0) will be the zeros in our shelving transfer
function. Choosing the left-halfplane zeros will give rise to a minimum phase filter.

Constructing the Numerator

In order to find the zeros of our low-shelving transfer function, we have to construct (i.e. find the coefficients
of) the polynomial:

NLS(s)NLS(−s) = G2
0DLP (s)DLP (−s) + k2

LP (G2 −G2
0)NLP (s)NLP (−s) (7)

What we have to work with are the coefficients of the polynomials NLP (s), DLP (s) and the constants
G0, G, kLP . Constructing the numerator polynomial involves to first find two polynomials N−

LP (s), D−
LP (s)

such that N−
LP (s) = NLP (−s) and D−

LP (s) = DLP (−s). To find N−
LP (s), we simply take the coefficients

of NLP (s) and sign-invert all coefficients that multiply odd powers of s, likewise for D−
LP (s). This works

because a sign change in the argument to NLP (s) can be translated into a sign change in the odd-power
coefficients. Having found the coefficients of N−

LP (s), we construct NLP (s)NLP (−s) = NLP (s)N−
LP (s) by

convolving the coefficient arrays of NLP (s) and N−
LP (s), likewise for the denominator. Once we know

the coefficients of DLP (s)DLP (−s) and NLP (s)NLP (−s), we can multiply these coefficient arrays by the
appropriate factors (G2

0 and k2
LP (G2 − G2

0), respectively) and add the results together to construct the
coefficient array of NLS(s)NLS(−s). That’s now finally the coefficient array at which we may throw our
polynomial root finder (and then select the left halfplane roots afterwards).
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Prescribing a Midpoint Gain

The design procedure above ensures that the low shelving-filter has the desired gain values at zero and
infinite frequency. It is sometimes desired to specify a gain at an intermediate point. For example, for
lowpass filters, we usually specify the gain that the filter should have at the cutoff frequency (which is
normalized to unity, for our purposes). Likewise, we would like to specify the gain for our low-shelving
filter at unit frequency as some intermediate value between G0 and G. We shall denote this gain value by
GB, for bandwidth-gain. Often, setting GB =

√
G0G, the geometric mean between G0 and G, is a good

choice. This choice will translate to an arithmetic mean when all gain-values are expressed in decibels. To
obtain our prescribed gain value GB at unit frequency in the shelving filter, we note that by (3), we must
have:

G2
B = G2

0 + (G2 −G2
0)G

2
C (8)

where GC is the gain of the lowpass prototype at the (unit) cutoff frequency. Solving this equation for GC

gives:

GC =

√
G2

B −G2
0

G2 −G2
0

(9)

Thus, to obtain a prescribed shelving gain at unit frequency GB, we should design our lowpass prototype
such that its gain at unit frequency GC is given by the value above. For some lowpass prototype designs
(for example Butterworth), we can straightforwardly prescribe the desired gain at unit cutoff and obtain
the poles and zeros that will realize this gain. For other designs (for example Bessel), this is not so easily
possible. For such filters, we first obtain preliminary lowpass poles and zeros, then find the frequency ωc

at which the filter has the desired gain, and then scale all poles and zeros by the reciprocal of ωc. To
fix the gain at DC, we must also scale kLP by ω

np−nz
c where np, nz are the numbers of finite poles and

zeros respectively. Alternatively and possibly simpler, we could just design a low-shelving filter with the
proper low- and high-frequency gain but yet unspecified bandwidth gain, then find the frequency at which
the desired bandwidth gain occurs and then scale the shelver’s zeros, poles and kLS in the same way as
described above for the lowpass.

Boosting and Attenuating

Consider the special case where the pedestal is normalized to unity, such that G0 = 1, corresponding to
a reference gain of 0dB on a decibel scale. In design procedure above, we may have either G > 1 which
corresponds to a boost of low frequencies or G < 1 which corresponds to an attenuation of low frequencies.
However, for some gain value G and its reciprocal 1/G, the magnitude response curves plotted on a decibel
scale are not, in general, mirror images of each other. But this seems to be a desirable property since it
would mean that a boost and an attenuation by the same amount would cancel each other exactly. To
achieve such a cancellation, we must ensure that in a boost and an attenuation by the same amount, the
poles and zeros exchange roles. So we may in any case design a boost filter by simply setting G ← 1/G
whenever G < 1 and after the poles and zeros were found, we simply swap them. After swapping, we must
also invert the overall gain factor, so we assign kLS ← 1/kLS. For the more general case where G0 6= 1, we
do the inversion and pole/zero-swapping for both G and G0, whenever G < G0.
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