
Hermite Interpolation Between 2 Points

Problem Setting

In general, the term ”Hermite interpolation” refers to interpolation by means of a polynomial that passes
through a given number of sample points (xi, yi) and also satisfies constraints on some number of derivatives
y′i, y

′′
i , . . . at these sample points. Here, we consider the problem of finding a polynomial that goes through

the two points (x0 = 0, y0) and (x1 = 1, y1). In addition to prescribe the function values y0, y1, we also
prescribe values for some number of derivatives y′0, y

′
1; y
′′
0 , y
′′
1 ; etc.. Our particular choice of the x coordinates

has been made to keep the formulas simple. However, if we want to have arbitrary x-coordinates for
the endpoints, say xmin, xmax, we may simply transform the input value for the polynomial by x̃ =
(x− xmin)/(xmax − xmin). Our new variable x̃ will then pass through the range 0, . . . , 1 when the original
x passes through xmin, . . . , xmax. The number of derivatives that we want to control dictates the order of
the polynomial that we have to use. In order to be able to prescribe values for M derivatives, we need a
polynomial of order N = 2M + 1.

Derivation for the 7th Order Case

To illustrate the procedure to compute the polynomial coefficients, we consider - as example - the case
where we control M = 3 derivatives. This calls for a 7th order polynomial. In the following derivation, the
framed equations are those that we actually need for the implementation. Our interpolating polynomial
and its first 3 derivatives have the general form:

y = a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0

y′ = 7a7x
6 + 6a6x

5 + 5a5x
4 + 4a4x

3 + 3a3x
2 + 2a1x+ a1

y′′ = 42a7x
5 + 30a6x

4 + 20a5x
3 + 12a4x

2 + 6a3x+ 2a1

y′′′ = 210a7x
4 + 120a6x

3 + 60a5x
2 + 24a4x+ 6a3

(1)

To satisfy our constraints at the left endpoint x0 = 0, we put in x = 0 on the right hand sides and
y0, y

′
0, y
′′
0 , y
′′′
0 on the left hand sides, and we immediately obtain a0, a1, a2, a3:

y0 = a0, y′0 = a1, y′′0 = 2a2, y′′′0 = 6a3 (2)

...for the actual implementation, you need to solve them for the a−coefficients (this is left for the reader
as exercise ;-). To satisfy our constraints at the right endpoint x1 = 1, we put in x = 1 on the right
hand sides and y1, y

′
1, y
′′
1 , y
′′′
1 on the left hand sides - we obtain 4 equations for the remaining 4 unknowns

a4, a5, a6, a7:
y1 = a7 + a6 + a5 + a4 + a3 + a2 + a1 + a0

y′1 = 7a7 + 6a6 + 5a5 + 4a4 + 3a3 + 2a2 + a1

y′′1 = 42a7 + 30a6 + 20a5 + 12a4 + 6a3 + 2a2

y′′′1 = 210a7 + 120a6 + 60a5 + 24a4 + 6a3

(3)

bringing the already known a0, a1, a2, a3 to the left side:

y1 − a3 − a2 − a1 − a0 = a7 + a6 + a5 + a4

y′1 − 3a3 − 2a2 − a1 = 7a7 + 6a6 + 5a5 + 4a4

y′′1 − 6a3 − 2a2 = 42a7 + 30a6 + 20a5 + 12a4

y′′′1 − 6a3 = 210a7 + 120a6 + 60a5 + 24a4

(4)
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for convenience, we define constants k0, k1, k2, k3 for the 4 left hand sides of the equations:

k0 = y1 − a3 − a2 − a1 − a0

k1 = y′1 − 3a3 − y′′0 − a1

k2 = y′′1 − y′′′0 − y′′0
k3 = y′′′1 − y′′′0

(5)

where we have also used that 6a3 = y′′′0 and 2a2 = y′′0 . Our system of equations now becomes:

k0 = a7 + a6 + a5 + a4

k1 = 7a7 + 6a6 + 5a5 + 4a4

k2 = 42a7 + 30a6 + 20a5 + 12a4

k3 = 210a7 + 120a6 + 60a5 + 24a4

(6)

finally, solving this system for the remaining 4 unknowns a4, a5, a6, a7 gives:

a4 =
−k3 + 15k2 − 90k1 + 210k0

6

a5 = −−k3 + 14k2 − 78k1 + 168k0
2

a6 =
−k3 + 13k2 − 68k1 + 140k0

2

a7 = −−k3 + 12k2 − 60k1 + 120k0
6

(7)

Results for Some Other Cases

Having seen the derivation for the 7th order case, it shall suffice for other cases to just give the results.
Here we go:

1st order case

a0 = y0, a1 = y1 − y0 (8)

3rd Order Case

a0 = y0, a1 = y′0 (9)

k0 = y1 − a1 − a0, k1 = y′1 − a1 (10)

a2 = 3k0 − k1, a3 = k1 − 2k0 (11)

5th Order Case

a0 = y0, a1 = y′0, a2 =
y′′0
2

(12)

k0 = y1 − a2 − a1 − a0, k1 = y′1 − y′′0 − a1, k2 = y′′1 − y′′0 (13)

a3 =
k2 − 8k1 + 20k0

2
, a4 = −k2 + 7k1 − 15k0, a5 =

k2 − 6k1 + 12k0
2

(14)
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The General Case

For the general case, where we control M derivatives by using a polynomial of order N = 2M+1, a general
pattern emerges. The polynomial coefficients an for powers up to M can be computed straightforwardly
via:

an =
y
(n)
0

n!
, n = 0, . . . ,M (15)

where y(n) denotes the n− th derivative of y, the 0− th derivative is the function itself. Now, we establish
a vector k = (k0, . . . , kM) of M + 1 k-values, whose element kn is given by:

kn = y
(n)
1 −

M∑
i=n

αn,iai n = 0, . . . ,M (16)

where

αn,i =
i∏

m=i−n+1

m (17)

Note that for this product to work in general, we must make use the definition of the empty product:∏N
i=n ai = 1, for N < n, i.e. when the end-index is lower than the start-index. We also establish a

(M + 1) × (M + 1) matrix A, whose element Ai,j is given by:

Ai,j =

M+j∏
m=M+j−i+2

m (18)

Now, we collect our remaining unknowns aM+1, . . . , aN into the vector a, such that: a = (aM+1, . . . , aM).
The system of equations for the remaining unknowns may now be expressed as the matrix equation:

k = Aa (19)

Numerically solving this equation for a (for example by Gaussian elimination) yields the remaining poly-
nomial coefficients aM+1, . . . , aN . [Question to self: can a simpler solution be derived that avoids the need
for the general linear system solver?]
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