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Digital Signals - Sampling and Quantization

A signal is defined as some variable which changes subject to some other independent variable. We will
assume here, that the independent variable is time, denoted by t and the dependent variable could be
any physical measurement-variable which changes over time - think for example of a time varying electric
voltage. We will denote the generic measurement variable with x or x(t) to make its time-dependence
explicit. An elementary example of such a signal is a sinosoid. When we want to represent such a sinosoid
in the digital domain, we have to do two things: sampling and quantization which are described in turn.

Sampling

The first thing we have to do, is to obtain signal values from the continuous signal at regular time-intervals.
This process is known as sampling. The sampling interval is denoted as Ts and its reciprocal, the sampling-
frequency or sample-rate is denoted as fs, where fs = 1/Ts. The result of this process is just a sequence of
numbers. We will use n as an index into this sequence and our discrete time signal is denoted as x[n] - it
is customary in DSP literature to use parentheses for continuous variables such as the time t and brackets
for discrete variables such as our sample index n. Having defined our sampling interval Ts, sampling just
extracts the signals value at all integer multiples of Ts such that our discrete time sequence becomes:

x[n] = x(n · Ts) (1)

Note that at this point (after sampling), our signal is not yet completely digital because the values x[n]
can still take on any number from a continuous range - that’s why we use the terms discrete-time signal
here and not digital signal. Figure 1 illustrates the process of sampling a continuous sinosoid. Although it

Figure 1: Sampling a sinosoid - we measure the value of the signal at regular time-intervals

has been drawn in the right plot, the underlying continuous signal is lost in this process - all we have left
after the sampling is a sequence of numbers. Those numbers themselves are termed samples in the DSP
community - each such number is a sample in this terminology. This is different from what a musician
usually means when talking about samples - musicians refer to a short recording of an acoustic event as
sample. In this article we will use the DSP terminology. The question is: can we reconstruct the original
continuous signal from its samples?

Interpolation

Whereas the continuous signal x(t) is defined for all values of t, our discrete-time signal is only defined
for times which are integer multiples of Ts. To reconstruct a continuous signal from the samples, we must
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somehow ’guess’, what value the signal could probably take on in between our samples. Interpolation is
the process of ’guessing’ signal values at arbitrary instants of time, which fall - in general - in between
the actual samples. Thereby interpolation creates a continuous time signal and can be seen as an in-
verse process to sampling. Ideally, we would want our interpolation algorithm to ’guess right’ - that is:
the continuous signal obtained from interpolation should be equal to the original continuous signal. The
crudest of all interpolation schemes is piecewise constant interpolation - we just take the value of one of
the neighbouring samples as guessed signal value at any instant of time in between. The reconstructed
interpolated function will have a stairstep-like shape. The next better and very popular interpolation
method is linear interpolation - to reconstruct a signal value we simply connect the values at our sampling
instants with straight lines. Figure 2 shows the reconstructed continuous signals for piecewise constant

Figure 2: Reconstructing the sinusoid from its samples via piecewise constant and linear interpolation

and linear interpolation. More sophisticated interpolation methods such as higher order polynomial in-
terpolation (quadratic, cubic, quartic, pentic, etc.), (windowed) sinc-interpolation exist as well - they will
yield smoother and more faithful reconstructions than the two simple ones described above.

The Sampling Theorem

Sampling and interpolation take us back and forth between discrete and continuous time and vice versa.
However - our reconstructed (interpolated) continuous time signal is by no means guaranteed to be even
close to the original continuous time signal. A major breakthrough for doing this sampling and interpo-
lation business ’right’ was achieved by Claude Shannon in 1948 with his famous Sampling Theorem. The
sampling theorem states conditions under which a continuous time signal can be reconstructed exactly
from its samples and also defines the interpolation algorithm which should be used to achieve this exact
reconstruction. In loose terms, the sampling theorem states, that the original continuous time signal can
be reconstructed from its samples exactly, when the highest frequency (denoted as fh) present in the signal
(seen as composition of sinosoids) is lower than a half of the sampling frequency:

fh <
fs

2
(2)

Half of the sample-rate is also often called the Nyquist frequency, in honor to Harry Nyquist who also
contributed a lot to sampling theory. When this condition is met, we can reconstruct the underlying
continuous time signal exactly by a process known as sinc-interpolation (the details of which are beyond
the scope of this article). A subtle side-note: in some books, the above inequation is stated with a ≤
rather than a < - this is wrong: fh has to be strictly less than half the sample-rate because when you try
to sample a sinusoid with frequency of exactly half the sampling frequency, you may be able to capture it
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faithfully (when the sample-instants happen to coincide with the maxima of the sinusoid), but when the
sample-instants happen to coincide with the zero-crossings, you will capture nothing - for intermediate
cases, you will capture the sinusoid with a wrong amplitude. Thus, perfect reconstruction is not guaranteed
for fh = fs/2. When the above condition is not met, but we sample and reconstruct the signal anyway,
an odd phenomenon occurs, widely known and quite often misunderstood - it’s called...

Aliasing

According to the sampling theorem, the signal in figure 1 is sampled properly. As this particular signal
is just a single sinosoid (as opposed to a composition of sinosoids), the highest frequency present in this
signal is just the frequency of this sinosoid. The sampling frequency is 10 times the sinosoids frequency,
that is: fh = fs

10
< fs

2
. To see it the other way around: 10 samples are taken from each period of the

signal and this is more than enough to exactly reconstruct the underlying continuous time sinosoid. To
make it more concrete, imagine the sinusoid has a frequency of 1Hz and the sample-rate was 10Hz (not
really practical values for audio signals, but that doesn’t matter for a general discussion). Now let’s see
what happens when we try to sample an 8Hz sinusoid at a samplerate of 10Hz. This is depicted in
figure 3. The high frequency sinusoid at 8Hz produces a certain sequence of samples as usual. However,

Figure 3: Aliasing: the sinusoid at f = 8Hz is aliased into another sinusoid at f = 2Hz, at a samplerate
fs = 10Hz because both produce the same sequence of samples

there exists a sinusoid of frequency 2Hz which would give rise to the exact same sequence of samples -
and it is this lower frequency sinusoid which will be reconstructed by our interpolation algorithm. The
general rule is: whenever we sample a sinusoid of a frequency f above half the sample-rate but below the
samplerate (fs > f > fs

2
), then its alias will appear at a frequency of f ′ = fs − f or f ′ = fs

2
− (f − fs/2)

where the second form makes it clear that we must reflect the excess of the signals frequency over the
Nyquist frequency at the Nyquist frequency to obtain its alias. Figure 4 illustrates the process of reflecting
at the Nyquist frequency for a signal with a spectrum that violates the condition of inequation 2 - this
reflection is as sometimes termed as foldover. When the sinusoid is even above the samplerate, we will see
it spectrally shifted into the band below half the sample-rate (which is called baseband). For even higher
frequencies the whole thing repeats itself over and over - this explanation is probably a bit quirky, but
figure 5 should give a fairly good intuition of which goes where and when we have to reflect. The fact
that higher frequencies intrude into the spectrum which we want to capture calls for lowpass-filtering the
continuous signal before we sample it. This is, what we need the so called Anti-Alias filters for. Without
those filters, we would have our spectrum completely messed up with aliasing products of frequencies above
the Nyquist frequency. Moreover, these alias products will in general not have any harmonic relationship
to our signal to be captured, which makes them sonically much more annoying than harmonic distortion
as we know them from analog equipment. Aliasing does not only occur when we want to capture analog
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Figure 4: Aliasing from a spectral point of view: parts of the spectrum above the Nyquist frequency are
reflected back into the baseband

Figure 5: If the original spectrum would have looked either one of the gray blocks, the resulting recon-
structed spectrum would always look like the first gray block

signals which are not properly anti-alias filtered, but also when we generate signals inside the computer in
the first place.

Quantization

After the sampling we have a sequence of numbers which can theoretically still take on any value on a
continuous range of values. Because this range in continuous, there are infinitely many possible values for
each number, in fact even uncountably infinitely many. In order to be able to represent each number from
such a continuous range, we would need an infinite number of digits - something we don’t have. Instead,
we must represent our numbers with a finite number of digits, that is: after discretizing the time-variable,
we now have to discretize the amplitude-variable as well. This discretization of the amplitude values is
called quantization. Assume, our sequence takes on values in the range between −1... + 1. Now assume
that we must represent each number from this range with just two decimal digits: one before and one after
the point. Our possible amplitude values are therefore: −1.0,−0.9, . . . ,−0.1, 0.0, 0.1, . . . , 0.9, 1.0. These
are exactly 21 distinct levels for the amplitude and we will denote this number of quantization levels with
Nq. Each level is a step of 0.1 higher than its predecessor and we will denote this quantization stepsize
as q. Now we assign to each number from our continuous range that quantization level which is closest
to our actual amplitude: the range −0.05... + 0.05 maps to quantization level 0.0, the range 0.05...0.15
maps to 0.1 and so on. That mapping can be viewed as a piecewise constant function acting on our
continuous amplitude variable x. This is depicted in figure 6. Note, that this mapping also includes a
clipping operation at ±1: values larger than 0.95 are mapped to quantization level 1, no matter how large,
and analogous for negative values.
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Figure 6: Characteristic line of a quantizer - inputs from a continuous range x are mapped to discrete
levels xq

Quantization Noise

When forcing an arbitrary signal value x to its closest quantization level xq, this xq value can be seen as
x plus some error. We will denote that error as eq (for quantization error) and so we have:

xq = x + eq ⇔ eq = xq − x (3)

The quantization error is restricted to the range −q/2... + q/2 - we will never make an error larger than
half of the quantization step size. When the signal to be sampled has no specific relationship to the
sampling process, we can assume, that this quantization error (now treated as a discrete time signal
eq[n]) will manifest itself as additive white noise with equal probability for all error values in the range
−q/2...+ q/2. Mathematically, we can view the error-signal as a random signal with a uniform probability
density function between −q/2 and +q/2, that is:

p(e) =

{
1
q

for −q
2
≤ e < q

2

0 otherwise
(4)

For this reason, the quantization error is often also called quantization noise. A more rigorous mathematical
justification for the treatment of the quantization error as uniformly distributed white noise is provided by
Widrow’s Quantization Theorem, but we won’t pursue that any further here. We define the signal-to-noise
ratio of a system as the ratio between the RMS-value of the wanted signal and the RMS value of the noise
expressed in decibels:

SNR = 20 log10

xrms

erms

(5)

where the RMS value is the square root of the (average) power of the signal. Denoting the power of the
signal as Px and the power of the error as Pe and using an elementary rule for logarithms, we can rewrite
this as:

SNR = 10 log10

Px

Pe

(6)

The power of the quantization error is given by the variance of the associated continuous random variable
and comes out as:

Pe =

∫ q
2

−q
2

1

q
e2 de =

q2

12
(7)

We take a sinusoid at unit amplitude as the wanted signal, this signal has a power of:

Px =
1

2
(8)
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Putting these expressions into equation 6, we obtain:

SNR = 10 log10

6

q2
(9)

To reiterate, this equation can be used to calculate the SNR between an unit amplitude sinusoid and
the quantization error that is made when we quantize the sinusoid with a quantization step size of q. In
the discussion above, we used a step size of 0.1 - this was only for easy presentation of the principles.
Computers do not represent numbers using decimal digits, instead they use binary digits - better known
as bits. With b bits, we can represent 2b distinct numbers. Because we want those numbers to represent
the range between −1 and 1, we could represent 2b−1 quantization levels below zero and 2b−1 above zero
- however, we have not yet represented the zero level itself. To do so, we ’steal’ one binary pattern from
the positive range - now we can only represent 2b−1 − 1 strictly positive levels. The step size is given by:

q =
1

2b−1
(10)

Having all this machinery in place, we are now in the position to calculate the SNR for a quantization of
the signal with b bits as:

SNR = 10 log10(6 · 22b−2) (11)

and as an easy rule of thumb:
SNR ≈ 6 · b (12)

This says: each additional bit increases the signal-to-noise ratio by 6dB. The exact formula gives an SNR
of roughly 98dB for 16 bits and an SNR of 146dB for 24 bits (as opposed to 96 and 144 for the thumb-
rule). Taking a sinusoid at full amplitude as reference signal is of course a rather optimistic assumption,
because this is a signal with a quite high power - its power is 1

2
and its RMS value therefore 1√

2
= 0.707.....

You are probably familiar with the notion of RMS-levels in decibels: the unit amplitude sine has an RMS
level of −3.01dB in this notation - such a high RMS level will occur rarely for practical signals. Thus, we
would expect a somewhat lower SNR for practical signals. A practical implication of the above analysis is,
that when recording audio signals, we have to make a trade off between headroom and SNR. Specifically:
for each 6dB of headroom we effectively relinquish one bit of resolution.
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